Aquatic systems as a tool for evaluating the toxicity of PFAS-free AFFF

Jason Hoverman, Professor
Department of Forestry and Natural Resources
Purdue University
Acknowledgements

- Collaborators: Devin Jones, Kathryn Quinlin, Maggie Wigren, Youn Choi, Marisol Sepúlveda, Linda Lee, David Haskins, Guilherme Lotufo, Alan Kennedy, Lauren May, Ashley Harmon, Tom Biber, Nick Melby, Michael Chanov, Michelle Hudson, Jamie Suski, Peter Key, Katy Chung, Edward Wirth, David Moore, Chris Salice, Todd Anderson, Jennifer Guelfo

- Department of Defense’s Strategic Environmental Research and Development Program (SERDP) grants ER20-1537, ER20-1518, and ER20-1531
Perpetual threat of contaminants
Aquatic Systems: Reservoirs For Contaminants
Aquatic Systems: Tools For Toxicology

• Model system for toxicity research
 - Numerous model species
 - Ease of culturing
 - Diverse suite of standardized tests
 • Acute
 • Chronic
 - Large-scale community-level experiments
 - Ease of field sampling
PFAS-free AFFF Alternatives Research

• Per- and polyfluoroalkyl substances (PFAS) are a global concern
 • Contamination, bioaccumulation, and health risks
• Increasing focus on developing PFAS-free foam alternatives to replace these chemicals
• Before the selection and implementation of PFAS-free foam alternatives, research must address their potential environmental impacts
• Contaminants pose a high risk to aquatic systems
 • Limited data for aquatic species
• SERDP-funded studies will assist in the final selection of new PFAS-free foam alternative formulations that minimize potential environmental risks
Aquatic Test Objectives

• Using a suite of ecologically diverse aquatic species, our objectives were to:
 • Determine the acute and chronic toxicity of PFAS-free AFFF alternatives to aquatic species
 • Characterize the relative toxicity of PFAS-free AFFF alternatives compared to PFAS-containing AFFF
 • Assess species-level variation in toxicity of PFAS-free AFFF alternatives
 • Additional objectives
 • Compare toxicity of PFAS-free AFFF alternatives between freshwater and marine species
 • Assess laboratory variation in toxicity results
Tested AFFF Formulations

- Provided by SERDP

<table>
<thead>
<tr>
<th>Formulation name</th>
<th>Formulation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckeye Platinum Plus C6 MILSPEC 3%</td>
<td>Reference C6 Formulation</td>
</tr>
<tr>
<td>National Foam AVIO F3 Green KHC 3%</td>
<td>Commercial PFAS-free Formulation</td>
</tr>
<tr>
<td>Bio-Ex ECOPOL A 3% FFF</td>
<td>Commercial PFAS-free Formulation</td>
</tr>
<tr>
<td>Fomtec ENVIRO 2-3% FFF</td>
<td>Commercial PFAS-free Formulation</td>
</tr>
<tr>
<td>Solberg Re-healing Foam RF3 3%</td>
<td>Commercial PFAS-free Formulation</td>
</tr>
<tr>
<td>Angus Fire JetFoam 3%</td>
<td>Commercial PFAS-free Formulation</td>
</tr>
<tr>
<td>National Foam NFD 20-391 Formulation</td>
<td>SERDP Developmental Formulation</td>
</tr>
<tr>
<td>NRL 502W Siloxane-based Formulation</td>
<td>SERDP Developmental Formulation</td>
</tr>
</tbody>
</table>
Acute Toxicity Trials

- Limited data on toxicity of PFAS-free AFFF foams
 - Formulations include alkyl sulfates, alkyl betaines, amphoteric surfactants, non-ionic surfactants, and amines
 - Complex mixtures of ingredients
 - SDS largely report toxicity of specific components rather than the entire foam
- Acute toxicity trials needed to assess basic toxicity and determine range of concentrations for chronic studies
- Pulling efforts across research groups allowed us to develop a more comprehensive assessment of toxicity
Plants, Invertebrates, And Vertebrates Tested

- **Freshwater and marine (○) species**

## Plant name	Scientific name
Freshwater algae | *Raphidocelis subcapitata*

## Invertebrate name	Scientific name
Water flea | *Ceriodaphnia dubia*
Water flea | *Daphnia magna*
Midge | *Chironomus dilutus*
Amphipod | *Hyalella azteca*
Mud snail | *Tritia obsoleta*

## Amphibian name	Scientific name
Jefferson's salamander | *Ambystoma jeffersonianum*
American toad | *Anaxyrus americanus*
Western chorus frog | *Pseudacris triseriata*
Gray tree frog | *Hyla versicolor*
Northern leopard frog | *Rana pipiens*
Wood frog | *Rana sylvatica*

## Fish name	Scientific name
Fathead minnow | *Pimephales promelas*
Sheepshead minnow | *Cyprinodon variegatus*
Methods Overview

• Sources: Commercial suppliers, lab cultures, or natural populations
• Husbandry: Cultured/reared using standardized protocols
Methods Overview

- Pilot studies used to assess general toxicity of foams prior to main experiments
- Main experiments (EPA or ASTM guidelines):
 - 4 to 9 concentrations (mg/L) tested
 - 2 to 10 replicates per treatment
 - 1 to 20 individuals per replicate
 - 48, 72, or 96-hr tests with mortality checked every 24 hr
- Statistical analyses
 - Calculated LC50 values using the ‘LC_logit’ function in the ecotox package of R
 - Weighted by total individuals tested per treatment
Representative Survival Curves

Freshwater zooplankton (Daphnia magna)

- Formulated Product
 - Avio
 - ECOPOL
 - NFD
 - FOMTEC
 - ReHealing
 - 502W
 - Buckeye

Northern leopard frog (Rana pipiens)

- Formulated Product
 - Avio
 - ECOPOL A
 - NFD
 - ReHealing
 - FOMTEC
 - 502W
 - Buckeye
• PFAS-free AFFF were generally more acutely toxic than the PFAS-containing AFFF (Buckeye)
• Variation across species in toxicity
• Let’s break this down

<table>
<thead>
<tr>
<th>EPA toxicity category</th>
<th>Acute concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very highly toxic</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Highly toxic</td>
<td>0.1 - 1</td>
</tr>
<tr>
<td>Moderately toxic</td>
<td>>1 - 10</td>
</tr>
<tr>
<td>Slightly toxic</td>
<td>>10 - 100</td>
</tr>
<tr>
<td>Practically nontoxic</td>
<td>>100</td>
</tr>
</tbody>
</table>
Distribution Of LC50 Values Across Invertebrates

- Broadest diversity in phylogeny – crustaceans, insects, snails
- Marine mudsnails were highly sensitive to AFFF formulations (note only marine invert. eval. thus far)
- Buckeye, 502W, and ReHealing were the least toxic
- Similar levels of toxicity among the other formulations
Distribution Of LC50 Values Across Amphibians

- Consistent results across the 6 species
- Buckeye was the least toxic followed by 502W
- Avio was the most toxic
Distribution Of LC50 Values Across Fish

- Buckeye was the least toxic followed by 502W
- Similar levels of toxicity among the other formulations
- Sheepshead minnows tended to be more sensitive (marine species)
- Similar results across our 3 lab groups for fathead minnows
Key Points

- PFAS-free AFFF were generally more acutely toxic than the PFAS-containing AFFF (Buckeye)
 - EPA toxicity category – Slightly toxic
- Consistency among results using the same species and among closely related taxa
- Marine species more sensitive than freshwater species
- Data submitted to *Environmental Science and Technology*
Chronic Toxicity Trials

• Concentrations in nature are expected to be well below the acute toxicity value for most species
• Using the acute toxicity data, we selected a range of concentrations to explore chronic effects on growth, development, and reproduction
• Focal species: water fleas, fathead minnows, and gray tree frogs

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Avio Green</th>
<th>Fomtec ENVIRO</th>
<th>Buckeye Platinum</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50/1000</td>
<td>0.017</td>
<td>0.038</td>
<td>2.96</td>
</tr>
<tr>
<td>LC50/100</td>
<td>0.17</td>
<td>0.38</td>
<td>29.6</td>
</tr>
<tr>
<td>LC50/10</td>
<td>1.73</td>
<td>3.77</td>
<td>295.8</td>
</tr>
<tr>
<td>LC50/5</td>
<td>3.46</td>
<td>7.54</td>
<td>591.5</td>
</tr>
<tr>
<td>LC10</td>
<td>6</td>
<td>3.2</td>
<td>2855.4</td>
</tr>
</tbody>
</table>
Water Flea Experiments

• Goal: Determine the long-term effects of AFFF alternatives on *D. magna* growth, reproduction, and survival

• Approach: Standardized 21-day test
 • Static renewal
 • 5 concentrations per formulation
 • 15 replicates per treatment
 • 1 individual per replicate
• Results: Buckeye Platinum Plus C6
Water Flea Experiments

• Results: National Foam AVIO
Water Flea Experiments

- Results: Bio-Ex ECOPOL
Water Flea Experiments

- Results: Fomtec ENVIRO

[Graphs showing mean clutch size and number of reproductive events for different exposure treatments.]
Fathead Minnow Experiments

- **Goal:** Determine the effects of AFFF alternatives on *P. promelas* growth and survival
- **Approach:** Standardized 7-day test
 - Static renewal
 - 5 concentrations per formulation
 - 4 replicates per treatment
 - 10 individual per replicate
Fathead Minnow Experiments

- Results:

![Graphs showing mean fathead minnow length vs exposure treatments for different AFFF formulations.](image-url)
Upcoming Experiments

Fish reproduction experiments
- Goal: Determine the effects of AFFF alternatives on *P. promelas* reproduction
- Approach: Standardized 28-day test (OECD/EPA)
- Responses:
 - Behavior
 - Fecundity
 - Fertility
 - Endocrine function

Amphibian experiments
- Goal: Determine the effects of AFFF alternatives on *H. versicolor* growth and development
- Approach: Metamorphosis test
- Responses:
 - Mass and SVL at metamorphosis
 - Time to metamorphosis
Incorporating ecology

• Community interactions and ecosystem-level effects
Summary

• Aquatic systems ideally suited for the exploration of PFAS-free AFFF toxicity
• PFAS-free AFFF formulations are generally more acutely toxic than PFAS-containing AFFF
• Substantial variation in chronic toxicity across PFAS-free AFFF formulations
• Additional analyses, experiments, and data synthesis needed to determine the formulations with the lowest environmental risk